4.1 Atomic Theory and Bonding

Anhas the prop	is to	he smallest p nat element	earticle of an ele	ment that still
50 million a	atoms, lineo	d up end to e	nd =	
An atom =		(s) +(s) +		(s)
Atoms join	together to	form	·	
A	is a j	pure substanc	ce that is compo	sed of two or
more	c	ombined in a	specific way.	
Oxygen and	d hydrogen	are	; H ₂ O is a	·
		ige occurs who form new co		ment of atoms in
Atoms are 1	nade up of	smaller part	icles called suba	tomic particles.
	Tal	ole 4.1 Subat	tomic Particles	
Name	Symbol	Electric Charge	Location in the Atom	Relative Mass
Proton	р	1+	Nucleus	1836
Neutron	n		Nucleus	1837
Electron	е	1-	Surrounding the nucleus	1
The	is	at the centre	of an atom. The	e nucleus is
composed o	of	and	·	
Electrons ex	xist in the _		_surrounding th	ne

of protons = # of electrons in every
charge = charge on the nucleus = # of protons
Atomic number = # of = # of
In the periodic table elements are listed in order by their
are on the left (the transition metals range from
group 3 to group 12), are on the right, and the
form a "staircase" toward the right side.
Rows of elements (across) are called All elements
in ahave their electrons in the same general area around their nucleus.
Columns of elements are called, or
All elements in ahave similar properties and bond with other elements in similar ways. • Group 1 = • Group 2 =
• Group 17 =
• Group 18 =

Atoms gain and lose electrons to form	The atoms
become electrically charged particles called_	·
Metals electrons and become posi	tive ions ().
Some metals () lose electro	ons in different ways.
For example,	
Non-metals electrons and become neg	gative ions ()
Atoms gain and lose electrons in an attempt to	o have the same
number of (ele	ectrons farthest from
the nucleus) as the nearest	in the periodic table.
diagrams show how many electron shell around an atom. Electrons in the	
called	
Think of the shells as being 3-D like spheres,	not 2-D like circles.
(example Sodium)	
Electrons appear in shells in a very predictabl	e manner. There is a
maximum of electrons in the first shell,	in the 2nd
shell, and in the 3rd shell.	

The number = the number of shells in the atom. Except for the transition elements, the last digit of the							
number = the number of electrons in the valence shell.							
When two atoms get close together, their valence electrons interact. If the valence electrons can combine to form a low-							
energy bond, a is formed.							
Each atom in the compound attempts to have thenumber of valence electrons as the nearest noble gas.							
may lose electrons and may gain							
electrons (bond), or atoms may							
electrons (bond).							
bonds form when electrons are transferred from							
positive ions to negative ions bonds form when electrons are shared between two non-metals.							
Electrons with their atom but with other shells.							
Ionic bonds are formed between positive ions and negative ions.							
Generally, this is a (+) and a (-) ion.							
For example, andform an ionic							
bond in the compound							

	diagrams illust	rate chemica	al bonding by	showing		
only an atom's	electrons and the chemical symbol.					
	representing eloss at the points ectron dots are paired.	of the compa	ass (north, eas	t, south,		
Lewis diagram	s can be used to	represent _	and	bonds.		
	ions, one eor each positive		s removed from	m the		
	ions, one enegative charge.		s added to eac	h valence		
Squaretransfer of elec	are plactrons.	ced around e	ach ion to ind	icate		
	s can also repre , valence electro					
The shared pai	rs of electrons a	re usually di	rawn as a			
Diatomic mole Lewis diagram	cules, like	, a	re also easy to	draw as		